FUEL SYSTEM – DIESEL

Day Tank Sizing

Tank Size (gal) = $\frac{\text{Rated BSFC (lb/hp \bullet hr)}}{7.076 (lb/gal)}$ x Rated HP x Load Factor

x Hours Between Refilling + Reserve Requirement

OR Rule of Thumb for tank size with 25% reserve

0.056 x Ave. BHP demand x Hours between refills x 1.25 = _____gal. 0.27 x Ave. BKW demand x Hours between refills x 1.25 = _____liters.

Note: Additional tank capacity required for cooling of recirculated fuel in unit-injected engines. Tank should be located below level of injectors or nozzles.

On-Site Power Requirements

Based on 100,000 sq ft. of office bldg., etc and 40°N. Latitudes

- Electric Requirements 600 kW continuous load (Air conditioning is absorption) Use three – 300 kW units (2 prime and 1 standby)
- Air Conditioning and Compressor 400 tons prime load Use two – 200 hp engines (No Standby)

Refrigeration

- One ton refrigeration = 200 Btu/min = 12,000 Btu/h
- One Boiler hp = 33,475 Btu/h
- One ton compressor rating = One engine hp
- Auxiliary air conditioning equipment requires 1/4 hp/ton of compressor rating

Ice Plant

• Complete power requires 4-5 hp per daily ton capacity

Air Compressor

 hp = 1/4 x cu ft m/min at 100 psi Increase bhp 10% for 125 psi Decrease bhp 10% for 80 psi

ELECTRICAL TABLES

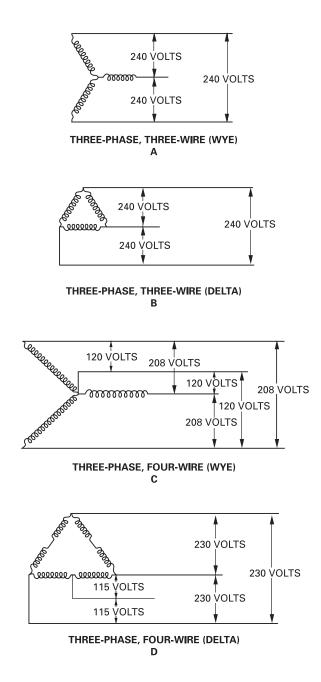
To Obtain	Alterna Single-Phase	nting Current Three-Phase	Direct Current
kW	<u>V x I x P.F.</u>	<u>1.732 x V x I x P.F.</u>	<u>V x I</u>
	1000	1000	1000
kVA	<u>V x I</u> 1000	<u>1.732 x V x I</u> 1000	
Horsepower required when kW known (Generator)	<u>kW</u> 746 x EFF. (Gen)	<u>kW</u> .746 x EFF. (Gen)	<u>kW</u> .746 x EFF. (Gen)
kW input when	<u>HP x .746</u>	<u>HP x .746</u>	<u>HP x .746</u>
HP known (Motor)	EFF. (Mot.)	EFF. (Mot.)	EFF. (Mot.)
Ampheres when	<u>HP x .746</u>	<u>HP x .746</u>	<u>HP x .746</u>
HP known	V x P.F. x EFF.	1.732 x V x EFF. x P.F.	V x EFF.
Ampheres when	<u>kW x 1000</u>	<u>kW x 1000</u>	<u>kW x 1000</u>
kW known	V x P.F.	1.732 x V x P.F.	V
Ampheres when	<u>kVA x 1000</u>	<u>kVA x 1000</u>	
kVA known	V	1.732 x V	
Frequency	<u>Poles x RPM</u>	<u>Poles x RPM</u>	
Hz	120	120	
Reactive	<u>V x I x √1-(P.F.)</u> ²	<u>1.732 x V x I x √1-(P.F.)</u> ²	
kVA (kVAr)	1000	1000	
% Voltage	<u>100 (V_{NL}-V_{FL})</u>	<u>100 (V_{NL}-V_{FL})</u>	<u>100 (V_{NL}-V_{FL})</u>
Regulation	V _{FL}	V _{FL}	V _{FL}

ELECTRICAL TABLE ABBREVIATIONS:

V - voltage in volts

- I current in ampheres
- kW power in kilowatts (actual power)
- **kVA** kilovolt-ampheres (apparent power)

 $\boldsymbol{\mathsf{HP}}-\mathsf{horsepower}$


RPM – revolutions per minute

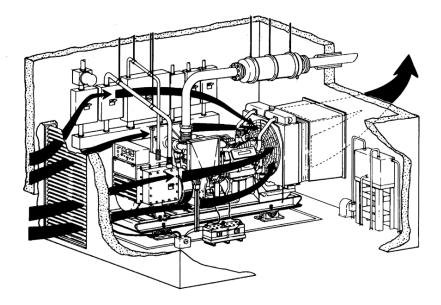
- kVAr reactive kilovolt-ampheres EFF. – efficiency as a decimal factor
- NL no load

FL – full load

- **P.F.** power factor
- Note: DC kW = DC kVA

THREE-PHASE CONNECTION SYSTEMS

REDUCED VOLTAGE STARTERS


Type of Starter	Motor Voltage (% Line Voltage)	Line Current (% Full Voltage) Starting Current	Starting Torque (% of Full Voltage) Starting Torque
Full Voltage Starter	100	100	100
Auto Transformer • 80% Tap • 65% Tap • 50% Tap	80 65 50	68 46 30	64 42 25
Resistor Starter Single Step (adjusted for motor voltage to be 80% of line voltage)	80	80	64
Reactor • 50% Tap • 45% Tap • 37.5% Tap	50 45 37.5	50 45 37.5	25 20 14
Part Winding (low- speed motors only) • 75% Winding • 80% Winding	100 100	75 50	75 50

COMPARISON OF REDUCED VOLTAGE STARTING METHODS

Characteristic	Autotransformer	Primary Resistor	Reactor	Two-Step Part Winding
Starting Line Current at Same Motor Terminal Voltage	Least	—— More than a	rmer type ——	
Starting Power Factor	Low	High*	Low	Low
Power Draw from Line During Starting	Low	—— More than a	rmer type ——	
Torque	Increases slightly with speed	Increases rapidly w	Increases rapidly with speed	
Smoothness of Acceleration	Motor momentarily disconnected from line from start to run	Smooth. Transfer made with little change in motor terminal voltage		Smooth
Relative Cost	Average	Lower in small size- otherwise equal	Average	Less than others
Ease of Control	Same	Same	Same	No provision for adjustment of starting current
Maintenance	Same	Same	Same	Less than others
Line Disturbance	—— Varies with co	onditions and type of l	oad ——	More than others

*Resistor starting adds considerable kW load to generator set. Total power required includes the motor kW and the kW which is lost as heat in the resistor. The series resistors account for a higher than normal starting power factor.

ENGINE ROOM VENTILATION

Engine room ventilation can be estimated by the following formulas, assuming 100° F (38° C) ambient air temperature:

V (cfm) = $\frac{H}{0.070 \times 0.24 \times \Delta T}$ + Engine Combustion Air

V (m³/min) = $\frac{H}{1.099 \times 0.017 \times \Delta T}$ + Engine Combustion Air

V = Ventilation air (cfm) (m³/min). H = Heat radiation (Btu/min) (kW). ΔT = Permissible temperature rise in engine room (°F) (°C). Density of air at 100° F = 0.070 lb/cu ft (1.099 kg/m³). Specific heat of air = 0.24 Btu/°F (0.017 kW/°C).

CONVERSION FACTORS

Length							
Unit	mm	in	ft	yd	m	km	mi
mm	1	0.03937	0.003281	0.001094	0.001	0.000001	—
in	25.4	1	0.08333	0.02778	0.0254	0.000025	—
ft	304.8	12	1	0.33333	0.3048	0.000305	
yd	914.4	36	3	1	0.9144	0.000914	—
m	1000	39.3701	3.28084	1.09361	1	0.001	0.00062
km	1000000	39370.1	3280.84	1093.61	1000	1	0.62137
mi	1609344	63360	5280	1760	1609.34	1.60934	1

		Area		
Unit	mm²	in²	m²	ft²
mm ²	1	0.00155	_	_
in²	645.16	1	0.000645	0.006944
m²	1000000	1550	1	10.76391
ft²	92903	144	0.0929	1

1 acre = 4840 yd²

1 sq mile = 640 acres 1 cir mil = 7.854 x 10⁻⁷in² 1 acre = 4840 vd² 1 cir mil = 0.7854 x mils² 1 cir mil =0.7854 x mils²

 $1 \text{ cir mil} = 5.067 \text{ x} 10^{-6} \text{ cm}^2$

Weight						
	Ounces Pounds Tons					
Unit	Kilograms	Avoirdupois	Avoirdupois	Short	Long	Metric
Kilograms	1	35.274	2.2046		—	—
Ounces Avoirdupois	0.02835	1	0.0625		—	—
Pounds Avoirdupois	0.45359	16	1	—	—	—
Short Ton	907.185	32000	2000	1	0.8929	0.9072
Long Ton	1016.05	35840	2240	1.12	1	1.0160
Metric Ton	1000	35274	2204.62	1.1023	0.9842	1

CONVERSION FACTORS

Flow					
Unit	U.S. gal/min	million U.S. gal/day	ft³/s	m³/h	L/s
U.S. gpm	1	0.001440	0.00223	0.2270	0.0631
1 million gal/day	694.5	1	1.547	157.73	43.8
ft³/s	448.8	0.0646	1	101.9	28.32
m³/h	4.403	0.00634	0.00981	1	0.2778
L/s	15.85	0.0228	0.0353	3.60	1

MCFD = 1000 ft³/day

MMCFD = 1,000,000 ft³/day

 $lb/bhp-hr \times 607.73 = g/kW-hr$

			Energy			
Unit	BTU	Cal	ft-lb	J	Kcal	Therm
BTU	1	252	778	1055.056	0.252	0.00001
Calorie	0.00397	1	3.08866	4.187	0.001	-
Foot-Pound	0.001285	0.323765	1	1.356	0.003089	_
Joule	0.000948	0.23895	0.73745	1	0.000239	-
Kilocalorie	3.96825	1000	3089	4185	1	2.519
Therm	100000	396.8254	128.5347	94.78169	0.39682	1

1 Therm = 1,000,000 Btu Btu/ft²/min = 0.1220 Watts/in² Btu/ft³ = 8.899 kg-cal/m³ Btu/lb =0.5556 kg-cal/kg

CONVERSION FACTORS

Volume and Capacity						
Unit	in ³	ft ³	yd³	mm ³		
in ³	1	0.00058	0.00002	16387.1		
ft ³	1728	1	0.03704	28320000		
yd ³	46656	27	1	764554858		
mm ³	6.1 x 10 ⁻⁵	4.0 x 10 ⁻⁸	-	1		
m ³	61023.7	35.3147	1.30795	100000000		
U.S.gal	231	0.13368	0.00495	3785420		
lmp gal	277.419	0.16054	0.00595	4540090		
liter	61.0237	0.03531	0.00131	1000000		
acre-ft	_	43560	1613.33	_		

1 board-foot = 144 in³ 1 bushel = 1.244 ft³

1 bushel = 4 pecks

Power			
Unit	Btu/min	ft-lb/min	hp
Btu/min	1	778.2	0.02358
ft-lb/min	0.00128	1	0.00003
Horsepower	42.456	33000	1
Joules/min	0.00095	0.7405	0.0000223
Metric hp	41.827	32550	0.98632
Kilowatt	59	44250	1.34102
Watt	0.05687	44.25	0.00134

Pressure	Pressure and Head						
Unit	mm/Hg (0° C)	in./Hg (0° C)	in. H ₂ O (60° F)	ft. H ₂ 0 (60° F)			
mm/Hg	1	0.03937	0.5357	0.04464			
in./Hg	25.4	1	13.61	1.134			
in. H ₂ O	1.86827	0.07355	1	0.08333			
ft. H ₂ 0	22.4192	0.88265	12	1			
lb/in²	51.7149	2.03602	27.70	2.309			
kg/cm²	735.559	28.959	395	32.84			
bar	750.062	29.530	401.8	33.49			
kPa	7.50062	0.29530	4.01835	0.33486			

CONVERSION FACTORS

m ³	U.S. gal	lmp gal	liter
0.00002	0.00432	0.00361	0.01639
0.02832	7.48052	5.22883	28.3169
0.76455	201.974	168.178	764.555
-	2.6 x 10 ⁻⁷	2.2 x 10 ⁻⁷	1.0 x 10 ⁻⁶
1	264.192	219.969	1000
0.00378	1	-	3.78541
0.00455	1.20095	1	4.54609
0.001	0.26417	0.21997	1
1233.48	325851	271335	_

J/min	Metric hp	kW	W
1055.000	0.02391	0.0175843	17.5843
1.3504	0.00003	0.0000226	0.0226
44791	1.014	0.74570	745.7
1	0.0000226	0.0000166	0.016668
44127	1	0.73549	735.498
59997	1.35962	1	1000
59.9968	0.00136	0.001	1

		Atmospheres		
lb/in²	kg/cm²	bar	101.4Pa (14.7 psi)	kPa
0.01934	0.00136	0.00133	0.001315	-
0.49115	0.03453	0.03386	0.03342	-
0.03613	0.00254	0.00249	0.00246	0.249
0.43352	0.030479	0.02989	0.02950	2.989
1	0.07031	0.06895	0.06805	6.895
14.2257	1	0.98067	0.96784	98.067
14.504	1.01972	1	0.98692	101.325
0.145038	0.0101972	0.010000	0.00986920	1

CONVERSION FACTORS

Temperature Conversion

°F = (1.8 x °C) + 32 °C = 0.5555 (°F - 32)

Angle

1 quadrant = 90 degrees 1 quadrant = 1.57 radians 1 radian = 57.3 degrees 1 degree = 60 minutes 1 minute = 2.9 x 10 radians

Identifying Code Letters on AC Motors			
NEMA Code Letter	Starting skVA/hp		
А	0.00 - 3.14		
В	3.15 – 3.54		
С	3.55 - 3.99		
D	4.00 - 4.49		
E	4.50 - 4.99		
F	5.00 - 5.59		
G	5.60 - 6.29		
Н	6.30 - 7.09		
J	7.10 - 7.99		
K	8.00 - 8.99		
L	9.00 - 9.99		
М	10.00 - 11.19		
N	11.20 - 12.49		
Р	12.50 - 13.99		
R	14.00 - 15.99		
S	16.00 - 17.99		
Т	18.00 - 19.99		
U	20.00 - 22.39		
V	22.40		

Note: Code letters apply to motors up to 200 HP.

PRODUCT SUPPORT

PRODUCT SUPPORT DEFINITIONS

Extended Service Coverage (ESC)

Depending on the model and application, Silver, Gold, Platinum and Platinum Plus coverage levels are available from Caterpillar with terms to meet most applications, whether prime or standby.

Platinum and Platinum Plus provide additional allowances for overtime emergency freight, rental, crane and rigging support. Please see the registration contract for details.

Equipment	Coverage Option	
New Product	New ESC	
Existing Product	Advantage ESC	
Overhauls	OPC*	

Electric Power ESC reimburses covered parts at customer list price, labor at selling rates and travel and mileage charges (less any deductibles) for covered repairs.

Available worldwide for all Cat[®] Electric Power Products, ESC provides usual and customary parts and labor costs for covered system failures due to defects in materials and workmanship on components over the duration of the covered period.

This is a brief description of Extended Coverage. See your Cat dealer for more information. The Extended Coverage contract will govern.

*Overhaul Protection Coverage

PRODUCT SUPPORT

CUSTOMER SUPPORT AGREEMENTS

- A **Customer Support Agreement** (CSA) is an arrangement between the end user and the Cat dealer that helps lower the cost per unit of production.
- Agreements are tailored to fit your business needs and can range from simple Preventive Maintenance Kits to sophisticated Total Cost Performance Guarantees.
- Qualified Factory Trained dealer technicians assist you by maintaining your Cat Electric Power Products and driving down operating costs. Perhaps the most important feature of any CSA is flexibility.
- A Preventive Maintenance (PM) agreement covers specified maintenance at a fixed cost. You maintain reliability and efficiency because the maintenance is performed by highly skilled technicians at guaranteed costs, giving you the ability to budget more accurately.
- A **Total Maintenance and Repair** (TM&R) agreement covers all of the maintenance and repair costs. Instead of paying for maintenance or repairs as they are needed, you pay one flat rate to cover a broad range of parts and services.

Check with your local Cat dealer for available options with each agreement.

PRODUCT SUPPORT

CUSTOMER SUPPORT AGREEMENTS

	РМ	TM&R
Detailed inspections by highly skilled technicians	~	~
Scheduled maintenance	~	~
Labor and travel costs	v	 ✓
Use of genuine Cat parts, fluids and filters	~	~
S•O•S [™] Services and interpretation	V	~
Component repairs		 ✓
All unscheduled repairs, including wear out, with no exclusions, limitations or deductibles		~

For additional information or to find your nearest dealer go to:

www.catelectricpowerinfo.com

LEXE7582-05

June 2013

© 2013 Caterpillar All Rights Reserved Printed in USA CAT, CATERPILLAR, their respective logos, "Caterpillar Yellow" the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

